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Abstract
The influence of polydispersity on the magnetization of two-dimensional dipolar discs with
short-range repulsive interaction is studied by means of Monte Carlo simulations and a high
field approximation perturbation theory. Within the framework of perturbation theory an
analytical expression is derived for the magnetization of monodisperse and polydisperse
systems. The theoretical predictions are in good agreement with the corresponding Monte Carlo
simulation data.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Monolayers of dipolar particles play a prominent role in
experimental situations and liquid-state theories. The physical
properties of these systems are frequently described by the
quasi-two-dimensional (q2D) dipolar fluid models [1–3]. In
a q2D dipolar fluid the particles and the centres of the dipole
moments are constrained to lie on the same plane while the
dipole vectors can freely rotate in three dimensions (3D).
In such confined systems the orientational entropy of the
system is generally restricted, and thus new properties without
any bulk analogue may emerge. In q2D ferrofluids, e.g.,
an external magnetic field perpendicular to the surface (or
confinement walls) can be used to induce tunable repulsive
interactions between the particles. The long-ranged nature
of the dipole–dipole interaction in both 2D and 3D means
that special techniques are required in theories and computer
simulations of polar fluids. Sometimes, in lower dimensions,
these techniques are less time-consuming and therefore it is
worthwhile to study 2D models from both theoretical and
simulation points of view. In true 2D the dipole vectors are
allowed to rotate only in the plane of the dipole centres. It
has to be emphasized that the fluids under discussion here
are strictly two-dimensional ones and, in particular, that none
of our results apply to monolayers of a real, i.e. 3D, fluid.
However, today’s nanotechnology is able to produce platelet-
shaped magnetic nanoparticles [4], and this work would be a
first step in studying the restricted monolayers of such kinds

of particles. The literature for 2D dipolar fluids in not so
huge as that for the corresponding q2D and 3D ones. Among
others, Bossis et al [5–7] have performed molecular dynamics
(MD) simulations of the dielectric constant, distribution and
autocorrelation functions, and thermodynamic properties. The
second and third pressure and dielectric virial coefficients of
2D dipolar hard discs were calculated by Joslin [8]. The
mean spherical approximation (MSA) has been obtained for
dipolar hard discs by Isbister and Freasier [9]. Multipole
expansions for 2D dipolar systems have been worked out
by Joslin and Gray [10]. Recently Vargas et al [11] have
studied the thermodynamics of 2D magnetic particles. In
one of our earlier publications [12] we studied the magnetic
properties of polydisperse monolayers, where the susceptibility
of 2D fluids is also investigated. As a continuation, in
this work we deduce, on the basis of first-order perturbation
theory [13], an equation for the magnetization of polydisperse
2D ferrofluids. In order to verify the predictions of our theory
we carried out Monte Carlo simulations for the determination
of magnetization curves of 2D monodisperse and polydisperse
magnetic fluids.

2. Model

The system consists of soft discs of diameter σi , which have
permanent magnetic point dipole moments mi . The short-
range repulsive interactions between particles i and j are
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modelled by a shifted and truncated Lennard-Jones (soft disc)
pair potential:
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where ε is the energy parameter, ri j is the interparticle distance,
σi j = (σi +σ j)/2 and σc is the cut-off parameter. This form of
soft disc repulsion takes into account the fact that the particle
size in fluids exceeds the magnetic core diameter σi . In 2D
the dipole vectors are allowed to rotate only in the plane of the
dipole centres and the dipole–dipole potential can be written as

udd
i j = −mi m j D(i, j)/r 2

i j , (2)

where

D(i, j) = 2(m̂î ri j)(m̂ ĵ ri j) − (m̂i m̂ j ) = cos(θi + θ j − 2θi j).

(3)
Here the hat denotes a unit vector, θi , θ j and θi j specify
the orientation of mi , m j and the interparticle vector ri j ,
respectively, with respect to some arbitrarily chosen space-
fixed axis. The interaction of dipoles with an external magnetic
field H is

uex
i = −Hmi . (4)

The particle polydispersity is described by the gamma
distribution [14],

p(x) = x�

x0

(
x

x0

)
exp(−x/x0)

�(a + 1)
, (5)

where x is the magnetic core diameter of particles, x0 and a
are the parameters of the distribution, � denotes the Gamma
function, and x� = 1 nm is taken as the unit length. For the
disc-shaped particles, σ = x , and the magnetic moment reads

m(x) = Mdπx2/4, (6)

where Md represents the bulk magnetization of discs.

3. Magnetization of the ideal system

Using the concept of components we consider the mixture of
dipolar soft discs as a system of N = ∑c

κ=1 Nκ particles with
point dipoles at the centres of mκ (where c is the number of
components and Nκ is the number of particles of component
κ). The fluid is constrained to a 2D volume V at temperature
T and placed in an external magnetic field. The direction of
the field is irrelevant, so we can safely fix it in the direction
of the x axis, H = H ex . In the case of the ideal system it is
obvious that the potential energy of particles, which arises from
the presence of the external field, depends upon the orientations
of the dipoles with respect to the direction of the field and thus
the partition function of the system is given by

Q0 =
N∏

i=1

∫ 2π

0
dθi exp

(
mi H

kBT
cos θi

)

=
c∏

κ=1

[I0(ακ)]
Nκ , (7)

where I0(x) is the modified Bessel function of the first kind of
zero order, and ακ = mκ H/(kBT ). The magnetization of the
system will indeed be in the direction of the field, and for its
magnitude one has

M = − 1

V

(
∂ F

∂ H

)

N,V,T

= kBT

V

(
∂ ln Q

∂ H

)

N,V,T

, (8)

where F = −kBT ln Q is the free energy of the system. For
the mixture of non-interacting dipoles this yields

M0 = ρ

c∑

κ=1

Nκ

N
mκ

I1(ακ)

I0(ακ)
, (9)

where ρ = N/V is the particle number density, and I1(x)

is the modified Bessel function of the first kind of first order.
Assuming continuous polydispersity in dipole moment, the
magnetization can be expressed with the help of an integral
containing the particle distribution function of equation (5):

M0 = ρ

∫ ∞

0
dx p(x)m(x)

I1[α(x)]
I0[α(x)] , (10)

where m(x) is given by equation (6) and α(x) =
m(x)H/(kBT ). In the following we calculate the magnetiza-
tion of the polydisperse system on the basis of this equation.

4. Perturbation theory

The present calculation is based on the high field pertur-
bation approximation originally introduced by Buyevich and
Ivanov [13] for 3D systems. In the framework of this theory
we assume that the orientation of magnetic dipoles is governed
mainly by the external magnetic field and the dipole–dipole in-
teraction can be considered as a perturbation. Therefore the
reference system is described by the following interaction en-
ergy:

Ur =
∑

i< j

usd
i j +

∑

i

uex
i . (11)

The pair distribution function of the reference system reads

gr
i j(r12, θ1, θ2) = fi (θ1)gsd

i j (r12) f j (θ2), (12)

where gsd
i j is the pair correlation function of the soft disc

fluids and fi (θi) is the single-particle orientation distribution
function in the external magnetic field. On the basis of the
preceding section it is obvious that

fi (θi) = exp(αi cos θi)/I0(αi ). (13)

The configurational integral of the reference system is given as

Qr = Qsd

c∏

κ=1

[I0(ακ)]Nκ . (14)

In this approximation, knowledge of the configurational
integral Qsd is not necessary for the calculation of the
magnetization (since it does not depend on the magnetic
field strength); therefore we do not specify the corresponding
formula. The long-ranged dipole–dipole interaction in
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equation (2) is considered as a perturbation and, on the basis
of an expansion of the total configurational integral (Q) with
respect to the Mayer function f M

κ,λ, we obtain

ln
Q

Qr
= 1

2
ρ
∑

κ,λ

Nκ Nλ

∫ ∫ ∫ ∫

d2r1 d2r2 dθ1 dθ2

× fκ (θ1) fλ(θ2) f M
κ,λ(r12, θ1, θ2)gsd

κ,λ(r12) (15)

with

f M
κ,λ(r12, θ1, θ2) = exp

(−udd
κ,λ(r12, θ1, θ2)/(kBT )

)− 1. (16)

To calculate the integrals in equation (15) a further
approximation is necessary. We expand the Mayer function
into a first-order Taylor series with respect to the dipole–dipole
interaction. After the series expansion the integration with
respect to θ1 and θ2 can be performed analytically according
to the following equation:
∫ 2π

0
dθ1

∫ 2π

0
dθ2 fκ (θ1)D(θ1, θ2, θ12) fλ(θ2)

= I1(ακ)

I0(ακ)

I1(αλ)

I0(αλ)
(2 cos2 θ12 − 1). (17)

The remaining integration in equation (15) is

∫

d2r12
gsd

κ,λ(r12)

r 2
12

(2 cos2 θ12 − 1) = π, (18)

where, to avoid the depolarization, the integration is carried out
on an infinitely prolate ellipsis, and we used that the asymptotic
value of gsd

κ,λ(r12) is 1. Using equations (17) and (18) for the
first-order perturbation free energy term we obtain

F1 = − π

2V

∑
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Nκ Nλmκmλ
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Taking into account the continuous polydispersity in dipole
moment, the first-order perturbation term can also be expressed
as an integral containing the particle distribution function:

F1 = −πρN

2

(∫ ∞

0
dx p(x)m(x)

I1[α(x)]
I0[α(x)]

)2

. (20)

The corresponding first-order term for the magnetization is

M1 = ρ

(∫ ∞

0
dx p(x)m(x)
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I0[α(x)]

)

×
(

πρ
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∫ ∞

0
dx p(x)m2(x)

×
[

1 − 1
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(
I1[α(x)]
I0[α(x)]

)2
])

. (21)

The total magnetization is the sum of the contribution of the
ideal gas term (equation (10)) and the first-order perturbation
term (equation (21)):

M = M0 + M1. (22)

Figure 1. Magnetization as a function of the external magnetic field
for the monodisperse (full lines and full circles) and for the
polydisperse (dotted lines and open circles) fluids at T ∗ = 1.0 and
ρ∗ = 0.3. Symbols represent the simulation results and lines are the
theoretical predictions. From bottom to top, the curves with different
colours correspond to magnetizations at m∗2 = 0.5, 1.0 and 2.0,
respectively. The statistical uncertainties of the simulation results are
less than the symbol size. The total magnetization curves for the
monodisperse fluids are displayed in the inset.

5. Monte Carlo simulation

Constant volume and temperature Monte Carlo calculations
have been performed using translational–orientational and
resizing moves of the particles (semigrand ensemble). In
our recent work [12] a simple scheme was constructed to
produce appropriate distribution functions for the trial moves
responsible for generating the possible configurations of
particle sizes. In this method, the underlying (sampling)
particle distribution density pu(x) for the resizing moves is
dynamically updated during the first period of the simulation
in such a way as to minimize the deviation of the instantaneous
particle distribution density from the target distribution density
p(x). In the second period of the simulation we take the
final pu(x) as the input of a normal semigrand ensemble
simulation in order to obtain the exact equilibrium results
for the properties of interest. In all simulations N = 500
particles were employed. The frequency of attempting resizing
moves was equal to that of the translational and orientational
moves and, likewise, the acceptance criterion of the resizing
moves was the same as that used for the translational and
orientational moves. The long-ranged dipolar interactions
were treated using the Ewald summation with a conducting
boundary condition; see [15].

6. Results and discussion

The results for the (magnetic) dipolar fluids are presented in
reduced units, where the mean magnetic core diameter 〈x〉
is used for σ : ρ∗ = Nσ 2/V is the reduced density, T ∗ =
kBT/ε is the reduced temperature, m∗2 = m2/(εσ 2) is the
reduced squared magnetic dipole moment, H ∗ = H

√
σ 2/ε

is the reduced magnetic field strength, and M∗ = M
√

σ 2/ε

is the reduced magnetization. For the magnetic coupling,
λ = m∗2/T ∗ = 0.5, 1 and 2 were adopted at T ∗ = 1.
This choice implies that the average reduced magnetic dipole
moments were

√
0.5, 1 and

√
2 in all calculations. The
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Figure 2. Magnetization as a function of the external magnetic field
for the monodisperse (full lines and full circles) and for the
polydisperse (dotted and dashed lines and open circles and squares)
fluids at T ∗ = 1.0 and ρ∗ = 0.5. Symbols represent the simulation
results and lines are the theoretical predictions. The dashed lines and
the squares are the results obtained with a higher degree of
polydispersity (x0/x� = 1, a = 6, see text). From bottom to top, the
curves with different colours correspond to magnetizations at
m∗2 = 0.5, 1.0 and 2.0, respectively. The statistical uncertainties of
the simulation results are less than the symbol size.

Figure 3. Magnetization as a function of the external magnetic field
for the monodisperse (full lines and full circles) and for the
polydisperse (dotted lines and open circles) fluids at T ∗ = 1.1 and
ρ∗ = 0.5. Symbols represent the simulation results and lines are the
theoretical predictions. From bottom to top, the curves with different
colours correspond to magnetizations at m∗2 = 0.5, 1.0 and 2.0,
respectively. The statistical uncertainties of the simulation results are
less than the symbol size. The total magnetization curves for the
monodisperse fluids are displayed in the inset.

monodisperse fluid is characterized by uniform σ and m, with
the additional specification that m∗2 = 0.5, 1 and 2. Due to
the fact that 〈m〉 ∝ 〈x2〉 and 〈x2〉 	= 〈x〉2 for the polydisperse
fluid, the monodisperse fluid can be considered to have either
a different mean core diameter or different bulk magnetization
to those of the polydisperse fluid. For the parameters of the
gamma distribution, x0/x� = 0.3 and a = 24 were taken.
In our case, essentially zero net magnetizations were detected
in the directions perpendicular to the applied field direction.
Figure 1 shows the reduced dipole moment dependence of
the magnetization curves at T ∗ = 1 and ρ∗ = 0.3 for
monodisperse and polydisperse dipolar fluids. For the dipole
moments m∗2 = 0.5 and 1 we find both the perturbation
theoretical and the MC results to be in excellent quantitative
agreement for practically all field strengths. For m∗2 = 2

Figure 4. Magnetization as a function of the external magnetic field
for the monodisperse (full lines and full circles) and for the
polydisperse (dotted lines and open circles) fluids at T ∗ = 1.25 and
ρ∗ = 0.5. Symbols represent the simulation results and lines are the
theoretical predictions. From bottom to top, the curves with different
colours correspond to magnetizations at m∗2 = 0.5, 1.0 and 2.0,
respectively. The statistical uncertainties of the simulation results are
less than the symbol size. The total magnetization curves for the
monodisperse fluids are displayed in the inset.

Figure 5. Calculated magnetization relative to the magnetization of
the ideal ferrocolloid gas as a function of the Langevin parameter for
the monodisperse fluids at T ∗ = 1.0 (black) and T ∗ = 1.25 (orange)
and at ρ∗ = 0.5. Circles and full lines and diamonds and dotted lines
correspond to results at m∗2 = 0.5 and m∗2 = 1.0, respectively.

the level of quantitative agreement reduces significantly for
the field strengths 1 � H � 3. The difference between the
magnetization curves of the monodisperse and polydisperse
fluids is very small for the density ρ∗ = 0.3. The
magnetization curves at ρ∗ = 0.5 for several temperatures
are displayed in figures 2–4. We can see that the agreement
between the simulations and the present theory deteriorates
mainly at the highest reduced dipole moments, but this
weakness of the theory will be compensated to some extent as
the temperature increases. Since deviations from equation (10)
clearly reflect the variations in the interparticle interactions,
finally we present the calculated magnetizations relative to
those of the corresponding ideal system for two monodisperse
systems. In figure 5 we can emphasize how well the theory
works also in the low field region for m∗2 = 0.5 and 1.0 and
that the influence of temperature on the net interaction between
the particles is significant here.

In summary, on the basis of the comparison between the
first-order perturbation theoretical and MC simulation results

4



J. Phys.: Condens. Matter 20 (2008) 204111 T Kristóf and I Szalai

we can conclude that the proposed equations (equations (10)
and (21)) seem to predict reliably the magnetic properties of
2D dipolar fluids for the dipole moments m∗ � 1.
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